October 27, 2024

The Unnecessary Decline of U.S. Numerical Weather Prediction

This week I fielded a call from a reporter from the Washington Post, who wanted to discuss why the U.S. has fallen behind in using machine learning for weather prediction.  The story is here.


The reporter only had half the story:  traditional U.S. global weather prediction models, which solve the complex equations that describe atmospheric physics, have declined into mediocrity.

Specifically, NOAA's global model, the UFS, is now in third or fourth place behind the European Center, the UK Meteorology Office, and often the Canadians. The plot below shows a comparison for the middle troposphere (at a pressure of 500 hPa) between the European Center and the NOAA.   We are behind and not catching up.


But it is even worse than this.  The European Center is actively pushing AI/ML (Artificial Intelligence/Machine Learning) numerical weather prediction, with their efforts producing even more skillful predictions.   NOAA is hardly trying.

To put it bluntly, U.S. operational prediction is being left in the dust.  We have settled into mediocrity with little hope of change. 

This is entirely unnecessary and I can tell you why.  I have written two peer-reviewed papers in a major meteorological journal (here) and have served on national committees and attended numerous meetings considering the issue.

U.S. numerical weather prediction (NWP), which uses computer simulation to predict future weather, should be the best in the world.

Our nation invented the technology and led the world for decades. We have the largest meteorological research establishment in the world and spend more money on weather prediction than any nation.  Our private sector invented machine learning numerical weather prediction.

The United States should be far ahead of the rest of the world in a technology that saves lives, promotes our economy, and has great strategic value.  But we are not.

As you will see, this unfortunate situation results from ineffective government bureaucracy, isolation of government weather prediction from the creative energy of the university community, and too much money leading to multiple duplicative efforts, among other reasons.   

Reason Number One:  U.S. numerical weather prediction is spread over too many agencies 

In most nations, numerical weather prediction is the responsibility of one group.  In the U.S., governmental global weather prediction is spread over FIVE efforts:

  • NOAA, the National Oceanographic and Atmospheric Administration (the leading U.S. effort)
  • The US Navy
  • The US Air Force
  • NASA
  • U.S. Department of Energy

Thus, scientific and technical talent and computer resources are diffused over five groups, greatly undermining progress.

But it is worse than that.  Another independent (and important) independent NWP development is found at the National Center for Atmospheric Research, the combined effort of the university community. Government agencies have generally not taken full advantage of such university research and development.


The private sector also has major global weather prediction efforts, such as those run by IBM/WeatherChannel and several high-tech firms developing AI prediction systems. 

With national resources divided, with relatively little cooperation and few joint efforts, U.S. progress in global weather prediction has trailed behind other nations and the state of the science.

Reason 2:  NOAA Organization of NWP is Flawed

The central U.S. agency responsible for operational numerical weather prediction is NOAA, of which the National Weather Service is a component.  In NOAA, no single individual has overall responsibility for the success of U.S. operational numerical weather prediction. 

Today, the NWS Environmental Modeling Center (EMC) director, who is responsible for running NOAA forecast models does not control model development, which is found outside the National Weather Service in NOAA OAR (ESRL, GFDL, and NSSL labs).   Funding for model development initiatives, and particularly the support of extramural modeling research, is found in both the National Weather Service Office of Science Technology Integration (OSTI) and the NOAA OAR Weather Program Office (WPO), not by the leadership of EMC.  


This division of responsibility and resources has led to competing efforts, wasted resources, and occasionally unproductive conflicts and tensions.

NOAA management has also made some very poor decisions that have undermined progress.  For example, 8 years ago, realizing their global modeling system needed to be replaced, NOAA management decided to use an in-house system (FV-3) instead of a modeling system developed by the academic community (NCAR's MPAS).

Refusing to complete extensive testing and rejecting warnings about FV-3 (that it failed to accurately simulate convection...e.g., thunderstorms), they adopted FV-3.   As predicted, the model flaws became apparent in recent years and NOAA is being forced to abandon FV-3.  The result is the loss of nearly a decade of effort and tens of millions of dollars of public funds.

Reason 3:  Lack of Cooperation and Joint Research and Development with the Academic Community

As noted above, NOAA rejected the the well-tested model developed by the university community, called MPAS.  Today, they are being forced to reconsider that decision and recently announced they will use MPAS for regional applications, but have been silent regarding global prediction.

But NOAA's refusal to work with the large university community is more clearly shown by the story of the EPIC center. In 2017 Congress passed the Weather Research and Forecasting Innovation Act, followed by the National Integrated Drought Information System Reauthorization Act of 2018, which established an Earth Prediction Innovation Center (EPIC). 

  It was hoped that EPIC could become an independent, national center for model development and innovation, bringing together the academic, governmental, and private-sector communities. Unfortunately, NOAA downgraded EPIC into an entity centered on code maintenance and support, not the independent national development center visioned by Congress.  A major defense contractor with no experience in weather prediction was given the contract (Raytheon).

To put in politely, EPIC is recognized as a failure.

Reason 4:  Inadequate computer resources.

U.S. operational NWP has historically suffered from a lack of computer resources, often with far less computational capability than competitors with lesser requirements (e.g., ECMWF).  A decade ago, during the landfall of Hurricane Sandy, NOAA/NWS/NCEP operational NWP computers only had a peak capacity of 0.1 petaflops, roughly one-tenth of that available to ECMWF, which possessed a far more limited NWP portfolio. Although NOAA/NWS has recently acquired significant computer upgrades, it possesses only a fraction of the computer resources it could productively use in operational NWP.   Furthermore, there is a profound shortage of computing resources for supporting research. 

High-resolution global prediction (grid spacing of 3 km or less) could revolutionize weather prediction, producing far more skillful forecasts, but NOAA has no plans to secure the computing resources necessary to make this happen.

The Department of Energy is able to acquire vast computing resources hundreds of times greater than NOAA.  NOAA needs access to such computing capabilities to help protect and warn the American people.


How the U.S. Could Have the Best Global Weather Prediction Within A Few Years

If the new Congress and President wish for the U.S. prediction effort to gain world leadership within a few years, this is how to do it:

1.  Establish an EPIC center outside of NOAA, that will be an independent national center to develop and test the best global weather prediction models in the world.  Many of the critical pieces are available today:  the NCAR MPAS global model and the JEDI data assimilation infrastructure.   This will be a multi-agency effort with the active participation of NCAR and the university community.

2.  Move all forecast model development, support, and operations in NOAA into ONE entity, with one person being responsible.

3.  Secure at least 100 times the current computer resources for forecast model development and operations.

4.  As part of the EPIC effort, actively evaluate and test ML-based prediction approaches, with close cooperation with American tech firms that are already active in this field.  Develop operational ML weather prediction systems, as well as hybrid approaches with physics-based models.

In five years we could easily be the best in the world.





26 comments:

  1. Interesting and helpful. The NWS did get the Sunday a.m. rain correct.
    The European Centre for Medium-Range Weather Forecasts {ecmwf} anomaly correlation coefficient appears to have plateaued at about 0.94.
    Given the complexity of the atmosphere, is this about as good as it gets?
    Can anyone get above, say, 0.97 for a 120 hour forecast? (About 94% accurate.)

    ReplyDelete
  2. While there's plenty of reasons why there's more competition than cooperation to get better at predicting the world's weather it seems kind of silly. We all share the same planet/weather and we all benefit in so many ways by making forecasts more accurate. There are some things in life that are too important to compete for and we need cooperate instead, weather forecasting is one of them. Of course who's gonna be the type of world leader that can make that happen?

    ReplyDelete
    Replies
    1. Competition = better. No competition = mediocrity.

      This has been proven over and over and over again.

      Delete
  3. Cliff, thank you for your insightful and clear breakdown of this issue.
    Now, how to get this sorted out? Any way to get a ballot to start course correcting this issue during our lifetime? Or is there no hope for the general public because of the mix of federal and private agencies that are involved?

    ReplyDelete
  4. I agree this is the Democrats fault. I believe Trump will do something to fix this problem. Make America Great Again and weather models.

    ReplyDelete
    Replies
    1. Nobody comes here for politics. Leave it.

      Delete
    2. Michael.... I think you are wrong.... high hit rate on this blog..cliff

      Delete
    3. What do you mean you "agree this is the Democrats [sic] fault?" Dr. Mass made no such claim.

      Delete
    4. So Trump is going to take our hard earned money and put it into weather models? Sounds like socialism.

      Delete
    5. Pacific NW Weather Chasers: No...this has nothing to do with Trump. We are already spending lots of money on weather models......we need to be less wasteful and do it in a rational way...cliff

      Delete
    6. We have seen it time and time again. Why are schools still under funded when we have the new revenue from pot sales? Or from the "sin" tax revenue? The list goes on. It is because more of the money from tax goes into the beaurocracy of the program. Project managers, lawyers, employees ect. By time it comes back to funding what it is suppose to fund not very much left. Hence any politician willing to look at waist spending in government is a win. Only one has said they will the other I've heard only need more money to fund it to make it work. Which in the one example I gave and many more to be given we know doesn't work.

      Delete
    7. Well at least we all agree Trump will win, lol.

      Delete
    8. Last I heard Project 2025 included disbanding NOAA. Remember the famous sharpie addition to hurricane track that resulted in reprimands to senior NOAA leadership when they dared to disagree with the Dear Leader. We need political leadership that recognizes the physical reality and importance of things like weather prediction and climate change, not ideologues who dismiss as a hoax or a waste of resources science that disagrees with their preferred reality that accounts for only their immediate gratification.

      Delete
  5. Cliff- insightful as always. It's not only about disconnected/established bureaucracies, but also money. Are you suggesting a focused effort to re-direct current funding from the multiple agencies without adding to the tax structure? Or is that wishful thinking? Unwinding current structures is always a daunting task, but there needs to be a leader (unencumbered by politics) empowered to make such a change. I agree that we should be the world's torch bearer in technological solutions, but how would you suggest galvanizing focus and support (since we are clearly not only talking about time, but probably mega $'s as well?

    ReplyDelete
    Replies
    1. Yes, you did just as good, or maybe even better than Cliff at describing the challenge. The way forward is a treaty or international agreement similar to what has made the space station so successful for the past few decades. Humans are capable of so much more when they work together rather than compete with each other. But a political leader who represents that truth has never seen more impossible at this point in our evolution as a species.

      Delete
    2. Clearly, the money needs to be redirected in a more rational way. Only Congress can do this.

      Delete
  6. Not greatly informed on EPIC but I do think its incorrect to state Raytheon has nothing to do with weather prediction when they have been working with AWIPS for many years now.

    ReplyDelete
    Replies
    1. AWIPS is NOT a weather model, it is a weather data display system And Raytheon had major problems getting that hardware to work.

      Delete
  7. I'm sure you don't mean to endorse a particular candidate for president. Although your hat joke is cute it could me mistaken as a trump endorsement.

    ReplyDelete
    Replies
    1. I am not endorsing a candidate on this blog. I am having FUN.

      Delete
  8. Cliff, this is just a feeling and thought, do you think agencies spend most money and resources on climate change modeling vs trying to get the best accurate 7 day weather forecasts. Ie new money, computational power, and modelers just focus climate change leaving other things not to get the attention it deserves? Correct me if that is totally false, but as mention we spend a lot on weather prediction, but what predictions?

    ReplyDelete
    Replies
    1. More computer resources are probably going into climate change modeling...

      Delete
  9. Considering our weather dissolve all five entities and use the money to subscribe to the European Center's notices.

    ReplyDelete
  10. Cliff's link may be behind a paywall and this link perhaps not:

    https://img3.washingtonpost.com/weather/2024/10/25/ai-weather-models-helene-milton-forecasts/?itid=mr_weather_2

    ReplyDelete
  11. Short version of the story.. cubicle sitter bureaucrats and their petty turf wars. End of story.

    ReplyDelete
  12. Cliff, the situation you report is endemic across the US Government, not just weather forecasting. Much money is spent but poor results are delivered. What is missing is brilliant technical leadership at the highest levels. The top leadership today are bureaucrats who are good infighters but not knowledgeable thinkers. DEI is NOT the main problem, merely an annoyance. Each agency needs a Werner Von Braun to galvanize the effort. Find that person, give them authority and SUPPORT to quell the infighting, and watch it succeed.

    ReplyDelete

Please make sure your comments are civil. Name calling and personal attacks are not appropriate.